United States Patent

US009165068B2

(12) (10) Patent No.: US 9,165,068 B2
Winter et al. 45) Date of Patent: Oct. 20, 2015
(54) TECHNIQUES FOR CLOUD-BASED 7,672,976 B2* 3/2010 Tobinetal. 707/999.107
SIMILARITY SEARCHES 8,060,522 B2* 11/2011 Birdwelletal. 707/764
8,285,658 B1* 10/2012 Kellas-Dicks etal. 706/20
. . 8,295,597 B1* 10/2012 Sharmaetal. 382/173
(75) Inventors: Sven Winter, San Jose, CA (US); 8.352,494 B1* 1/2013 Badoiu L 707/772
Jonathan Brandt, Santa Cruz, CA (US) 2007/0239694 Al* 10/2007 Singh etal. . .. 70773
2010/0027895 Al* 2/2010 Noguchi et al. 382/224
(73) Assignee: ADOBE SYSTEMS 2010/0106713 Al* 4/2010 Esulietal. 707/716
INCORPORATED, San Jose, CA (US) 2010/0332475 Al* 12/2010 Birdwell et al. ... 707/737
’ ’ 2011/0085739 Al* 4/2011 Zhangetal. 382/218
. 2011/0221769 Al* 9/2011 Leungetal. 345/633
(*) Notice: Subject to any disclaimer, the term of this 5012/0250984 AL* 10/2012 Taylogr """"""""" 3%2/162
patent is extended or adjusted under 35 2012/0314962 A1* 12/2012 Holland et al. . .. 382/218
U.S.C. 154(b) by 273 days. 2013/0054603 A1* 2/2013 Birdwell etal. ... 707/738
2013/0151535 Al* 6/2013 Dusbergeret al. 707/747
(21) Appl. No.: 13/566,718 * cited by examiner
(22) Filed: Aug. 3,2012 Primary Examiner — Mariela Reyes
(65) Prior Publication Data Assistant Examiner — Thong Vu
(74) Attorney, Agent, or Firm — Shook, Hardy & Bacon
US 2014/0040262 Al Feb. 6, 2014 LLP
(51) Imt.ClL
GO6F 17/30 (2006.01) 7 ABSTRACT
(52) U.S.CL Techniques for facilitating a similarity search of digital assets
CPC ... GO6F 17/30778 (2013.01); GO6F 17/30271 (e.g., audio files, image files, video files, etc.) are described.
(2013.01); GOG6F 17/30858 (2013.01); GO6F Consistent with some embodiments, a cloud-based search
17/30961 (2013.01) service manages one or more search tree data structures for
(58) Field of Classification Search use in organizing digital assets to make the digital assets
CPC GO6F 17/3071; GO6F 17/30864; GOGF searchable. Each digital asset is associated with a feature
17/30598 vector based on the various attributes and/or characteristics of
USPC 707/3,737,772, 738, 741, 763, 764; the digital asset. The digital assets are then assigned to leaf
382/162, 173, 218, 118, 229, 305, 353, nodes in one or more search tree data structures based on a
o 382/224, 226; 705/39 measure of the distance between the feature vector of the
See application file for complete search history. digital asset and a virtual feature vector associated with a leaf
. node. When a search for similar digital assets is invoked, a
(56) References Cited prioritized breadth first search of a search tree is performed to
U.S. PATENT DOCUMENTS identify the digital assets having the feature vectors closest in
o distance to the reference digital asset.
7,251,637 B1* 7/2007 Caidetal.cccceeevenenns 706/15
7,606,762 B1* 10/2009 Heit ...c.ccoovvvvvvvieriiarinins 705/39 21 Claims, 9 Drawing Sheets

NEW DIGITAL
ASSET
EUNE SO

HETONGS TO

INTERNAL:
NODE
38

INTERNAL
NODE

ASSET (E.G.,
IMAGE FILE)

U.S. Patent Oct. 20, 2015 Sheet 1 of 9 US 9,165,068 B2

PORTAL

SEARCH
SERVICT

DIGITAL

ASSETS
ol

NETWORK 14 |
CLOUD-BASED

B

FIG. 1

U.S. Patent Oct. 20, 2015 Sheet 2 of 9 US 9,165,068 B2

DIGITAL ASSET DIGITAL ASSET
INSERTION MODULE DELETION MODULE
22 24

SEARCH REQUEST PROCESSING MODULE
26

NODE BALANCING MODULE

28

SIMILARITY SEARCH SERVICE

DIGITAL

ASSETS

o

FIG. 2

U.S. Patent Oct. 20, 2015 Sheet 3 of 9 US 9,165,068 B2

NEW DIGITAL
ASSET

W

ROOT NODE
32

CHILD OF

INTERNAL INTERNAL

NODE
36

NODE
38

LEAF
NODE

BELONGS TO 40

DIGITAL
ASSET (E.G.,
IMAGE FILE)

FIG. 3

US 9,165,068 B2

Sheet 4 of 9

Oct. 20, 2015

U.S. Patent

\

75 ATl
HUVIS (dNO¥n/O11dNnd) 1vao 1o

¥ DId

LdSSV 8¢
TVLIDId

[

9y JATUL HOUVHS TVNOSHHd

U.S. Patent Oct. 20, 2015 Sheet 5 of 9 US 9,165,068 B2

AT A SERVER COMPUTER, RECEIVE A DIGITAL ASSET (E.G.,
AUDIO, IMAGE, VIDEO FILE, OR DOCUMENT) FROM A CLIENT

COMPUTING DEVICE
62
v
-
ASSIGN AN IDENTIFIER TO THE DIGITAL ASSET
¥
63
ANALYZE THE DIGITAL ASSET TO IDENTIFY THOSE U

ATTRIBUTES AND CHARACTERISTICS OF THE DIGITAL ASSET
THAT ARE WITHIN A PREDETERMIEND FEATURE SPACE

' o

GENERATE A FEATURE VECTOR FOR THE DIGITAL ASSET
BASED ON THE IDENTIFIED ATTRIBUTES AND

CHARACTERISTICS
' 65
STORE THE DIGITAL ASSET IN ASSOCIATION WITH THE
IDENTIFIER
v 66
TRAVERSE A SEARCH TREE DATA STRUCTURE BY —

DESCENDING THE SEARCH TREE IN ALAZY MANNER TO
IDENTIFY AT EACH LEVEL IN THE SEARCH TREE THE
IMMEDIATE SIBLING NODE HAVING A VIRTUAL FEATURE
VECTOR THAT IS CLOSEST IN DISTANCE TO THE FEATURE
VECTOR OF THE DIGITAL ASSET UNTIL A LEAF NODE IS
REACHED.

v 67
ASSIGN THE DIGITAL ASSET (E.G., THE UNIQUE IDENTIFIER
AND FEATURE VECTOR) TO THE IDENTIFIED LEAF NODE

FIG. 5

U.S. Patent Oct. 20, 2015 Sheet 6 of 9 US 9,165,068 B2

DETERMINE THAT THE NUMBER OF DIGITAL ASSETS 7
ASSIGNED TO A PARTICULAR LEAF NODE EXCEEDS SOME
DEFINED THRESHOLD LEVEL

{

¥

PERFORM A CLUSTING OPERATION TO GENERATE A NUMBER
OF CLUSTERS BASED ON THE FEATURE VECTORS OF THE 72
DIGITAL ASSETS ASSIGNED TO THE PARTICULAR LEAF NODE —

¥ 73
GENERATE A NUMBER OF NEW LEAF NODES EQUAL TO THE —
NUMBER OF CLUSTERS AND HAVING AS A PARENT NODE THE
PARTICULAR LEAF NODE, AND ASSIGN TO EACH NEW LEAF
NODE A VIRTUAL FEATURE VECTOR THAT IS BASED ON A
CLUSTER CENTERRESULTING FROM THE CLUSTERING
OPERATION

Y _
ASSIGN THE DIGITAL ASSETS THAT WERE ASSIGNED TO THE
PARTICULAR LEAF NODE TO A NEW LEAF NODE THAT HAS A
VIRTUAL FEATURE VECTOR CLOSEST IN DISTANCE TO THE
FEATURE VECTOR OF THE DIGITAL ASSET

FIG. 6

U.S. Patent Oct. 20, 2015 Sheet 7 of 9 US 9,165,068 B2

. @ o0

PENDING

INTERNAL ° ° LEAF
RESULT

PENDING

INTERNAL

RESULT

e

PENDING

RESULT

FI1G. 7

U.S. Patent Oct. 20, 2015 Sheet 8 of 9 US 9,165,068 B2

FIG. 8

&
4

U.S. Patent

Oct. 20, 2015

Sheet 9 of 9 US 9,165,068 B2
o 1508
1502 f) 1510
PROCESSOR | B g o DISPLAY
INSTRUCTIONS
1501 1517
MAIN MEMORY |« > |- > INPUT DEVICE
INSTRUCTIONS
1506 1511
USER INTERFACE
P . NAVIGATION
STATIC MEMORY | o - ™ (CURSOR CONTROL)
m DEVICE
2
1520 1516
STORAGE DEVICE
NETWORK NP -~
INTERFACE DEVICE MACHINE
152211 READABLE
} MEDIUM
)
R} 1523 -1{ INSTRUCTIONS
\\\A
|
R | I ——
SN 1518
- P SIGNAL GENERATION
i { B o DEVICE
NETWORK 2
1526 <
Y 1521
< - SENSOR
N
NG
A -
1500 FIG. 9

US 9,165,068 B2

1

TECHNIQUES FOR CLOUD-BASED
SIMILARITY SEARCHES

TECHNICAL FIELD

The present disclosure generally relates to data processing
systems. More specifically, the present disclosure relates to
methods, systems and computer program products that facili-
tate searching for a set of digital assets (e.g., image, video, or
audio files) that are similar to a target or reference digital
asset.

BACKGROUND

Conventional web-based search engines make it possible
to quickly search enormous quantities of online documents
for those that are most relevant by simply doing a keyword
search. Keyword searching is effective for large-scale sys-
tems due in large part to the document indexing (sometimes
referred to as web indexing) that is performed ahead of pro-
cessing an actual search. In general, document indexing, or
web indexing, involves collecting, parsing, and storing data in
a particular format to facilitate fast and accurate information
retrieval. When a user performs a keyword search to find
relevant documents, the search engine utilizes an index to
very efficiently identify the set of documents that contain all
or part of the user-provided keywords. These documents can
then be ranked using various algorithms and presented to the
user as search results.

While document indexing is effective for document
searching, when it comes to image searching, and in particu-
lar, searching a large corpus of images for those images that
are similar to a reference or target image (e.g., an image
similarity search), indexing by itself may not always provide
the best user experience and/or yield acceptable or good
results. This is due at least in part to the difference between
finding exact matches, as is done with keyword searching
when a particular word is identified as being included within
a document, and finding attributes that may not be an exact
match but are near matches (e.g., similar). If too many image
attributes are used to determine similarity, the search engine
will become less efficient as the number of images increases,
and thus lack scalability. In addition, a particular search may
yield too few results to be useful to the user because too few
of' the specific image attributes or factors will exactly match.
However, if too few image attributes are used to determine
similarity, then the relevance of the search results will suffer,
and once again, the search results will not be useful to the
user.

DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are illustrated by way
of example and not limitation in the figures of the accompa-
nying drawings, in which:

FIG. 1 is a block diagram illustrating a computer network
environment in which one or more client computing devices
may access a cloud-based resource providing a search func-
tionality consistent with some embodiments of the invention;

FIG. 2 is a block diagram illustrating the functional mod-
ules of a cloud-based similarity search service implemented
with one or more servers and consistent with some embodi-
ments of the invention;

FIG. 3 is a diagram illustrating a search tree data structure
for use with a similarity search service, consistent with
embodiments of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 is a diagram illustrating both a personal search tree
data structure and a global search tree data structure, both for
use with a similarity search service consistent with some
embodiments of the invention;

FIG. 5 is a flow diagram illustrating the method operations
for processing a digital asset when it is initially uploaded or
otherwise provided to a server operating a similarity search
service according to some embodiments of the invention;

FIG. 6 is a flow diagram illustrating the method operations
performed during a node balancing operation according to
some embodiments of the invention;

FIG. 7 is a block diagram illustrating the method opera-
tions that occur during a prioritized, breadth first search of a
search tree data structure, consistent with some embodiments
of the invention;

FIG. 8 is an example of a user interface for a tablet-based
computing device of an image similarity search service, con-
sistent with some embodiments of the invention; and

FIG. 9 is a block diagram of a machine in the form of a
computing device within which a set of instructions, for caus-
ing the machine to perform any one or more of the method-
ologies discussed herein, may be executed.

DETAILED DESCRIPTION

The present disclosure describes methods, systems, and
computer program products, which individually provide
functionality for facilitating a similarity search to identify a
set of digital assets (e.g., images, videos, audio files, etc.) that
are similar to a reference or target asset. In the following
description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough understand-
ing of the various aspects of different embodiments of the
present invention. It will be evident, however, to one skilled in
the art, that the present invention may be practiced without all
of the specific details.

For purposes of the present disclosure, the term “asset” or
“digital asset” refers to a digital representation of a particular
type of content, such as images, photographs, video, audio,
text, etc. Accordingly, a digital asset represents a particular
instance of some content, typically embodied as a computer
file and containing content of a particular type or format.
Many of the examples presented herein are described in the
context of a particular type of digital asset—specifically,
images. However, skilled artisans will readily appreciate the
applicability of the inventive subject matter to any number of
different content or digital asset types (e.g., video, graphics,
text, audio, etc.).

Various embodiments of the invention facilitate specific
implementations of a particular type of search that is referred
to herein as a “similarity search” (also frequently referred to
as “proximity search” and/or “nearest neighbor search”).
Accordingly, embodiments of the invention provide a mecha-
nism for a user to identify a specific digital asset (e.g., an
image, a video, etc.) and then perform a search of a plurality
of other digital assets with the objective of identifying a
subset of the digital assets that share attributes or character-
istics in common with the user-selected digital asset. In the
specific context of an image similarity search, the desired
result is a set of images that are most similar to a user-selected
image, sometimes referred to herein as a reference image.

To provide a scalable and effective cloud-based similarity
search for images (or other digital assets), a variety of tech-
niques are used. For example, with some embodiments, pat-
tern recognition techniques are used to determine the simi-
larity between any two digital assets. For example, each
digital asset is assigned a feature vector with the set of

US 9,165,068 B2

3

attributes or characteristics used in determining similarity
being the feature space. As such, the similarity between any
two digital assets (e.g., images) can be derived by computing
a measure of distance between two digital assets using the
feature vectors associated with the two digital assets. In addi-
tion and as described in greater detail below, a hierarchical
tree-like data structure, referred to herein generally as a
search tree data structure, which in some embodiments is
implemented with a graph database, is used to manage or
organize the digital assets, such that digital assets that are
deemed to be most similar (e.g., based on a derived measure
of distance between the assets, where the distance measure is
determined based on the asset’s respective feature vector) are
assigned to common leaf nodes in the search tree data struc-
ture. With some embodiments, multiple search tree data
structures may be used. For instance, with some embodi-
ments, a personal search tree data structure may be main-
tained for each user, such that the personal search tree data
structure organizes the personal digital assets that are
uploaded and only accessible to the particular user. Similarly,
one or more group, public, or global search tree data struc-
tures may be maintained for digital assets that are accessible
to multiple users, including a system-defined group of users
(e.g., a particular collaborative group, all employees of a
particular company, and so forth), or all users of the service.
With some embodiments, different search tree data structures
may be maintained for different subsets of attributes and/or
characteristics making up a feature space. For example, with
some embodiments, a first search tree data structure may be
maintained for organizing digital assets around a first set of
attributes and/or characteristics (e.g., color, size, etc.), while
a second search tree data structure is maintained for organiz-
ing the digital assets around a second set of attributes (e.g.,
facial recognition data).

When a new digital asset (e.g., image file) is uploaded to
the web-based service, a new digital asset is added to one or
more search tree data structures. In particular, a unique iden-
tifier is generated for the new digital asset, and then the new
digital asset is analyzed to identify various attributes or char-
acteristics from which a feature vector is derived for the
digital asset. Finally, the search tree data structure is traversed
by descending the tree in a greedy fashion, for example, by
selecting at each level in the tree the sibling node having the
feature vector that is closest in distance to the feature vector of
the new digital asset until a leaf node is reached. Once a leaf
node is reached during the tree traversal process, the digital
asset is assigned to the particular leaf node. More specifically,
the unique identifier and the feature vector corresponding
with new digital asset are assigned to the particular leaf node
identifying the digital asset. By accessing the unique identi-
fier of a digital asset assigned to a particular leaf node, the
actual stored digital asset can be accessed. Because the tree is
traversed in a greedy fashion, there is no guarantee that the
digital asset will be assigned to the leaf node having the
feature vector with the absolute closest distance to the feature
vector of the new digital asset.

Over time, the number of digital assets assigned to any one
particular leaf node will increase. Accordingly, with some
embodiments, a background process (referred to herein as a
node balancing process) monitors the number of digital assets
assigned to the various leaf nodes, and when the number of
digital assets assigned to a particular leaf node exceeds some
defined threshold number, a defined number of new child leaf
nodes are spawned for the over capacity leaf node. With some
embodiments, a clustering algorithm is used to assign a vir-
tual feature vector to each new child leafnode that is spawned.
Each virtual feature vector to be assigned to a new child leaf

35

40

45

4

node is derived by clustering the feature vectors of the par-
ticular digital assets that are assigned to the over capacity leaf
node. Once a cluster center (e.g., a virtual feature vector) is
derived for each new leaf node, the new leaf nodes are
attached or assigned to the original (over capacity) leaf node.
Finally, the digital assets that were initially assigned to the
original (over capacity) leaf node are reassigned to the closest
new child leaf node, where the distance between a digital
asset and any particular child leaf node is based on the feature
vector of the digital asset and the virtual feature vector of the
particular new child leaf node.

When a user specifies a particular digital asset (e.g., an
image) and requests to identify similar digital assets, a simi-
larity search is performed. With some embodiments, the simi-
larity search is performed by doing a prioritized breadth-first
search of the search tree data structure to identify a certain
number of digital assets that are closest in distance to the
reference digital asset, based on a comparison of their respec-
tive feature vectors. Due to the high-dimensionality of the
feature space, not all neighbors (i.e., similar digital assets)
will be connected to the same leaf node. Accordingly, the
prioritized breadth-first search will analyse the digital assets
assigned to many leaf nodes and will ultimately result in
identifying similar digital assets, even when the resulting
similar assets are assigned to a leaf node different from the
leaf node to which the reference or target digital asset is
assigned. Other aspects and advantages of the inventive sub-
ject matter will be readily apparent to those skilled in the art
from the description of the figures that follows.

FIG. 1 is a block diagram illustrating a computer network
environment in which one or more client-computing devices
may access a cloud-based resource providing search func-
tionality consistent with some embodiments of the invention.
Asillustrated in FIG. 1, with some embodiments, one or more
network-connected servers 10 are accessible to any number
of client-computing devices 12-A, 12-B and 12-C via the
network 15. Although illustrated in FIG. 1 as a single server
computer 10, the server may be part of a cluster of servers
such that the various functions described herein may be per-
formed collectively by the cluster of servers.

With some embodiments, the cloud-based portal may pro-
vide any number of services and/or functions in addition to a
similarity search service. For example, the cloud-based portal
may operate in conjunction with one or more applications
residing on a client-computing device to facilitate any one or
more of a file storage service, a document management ser-
vice, a document editing service, an image, video, and/or
audio editing and/or publication tool. The similarity search
service may operate as a standalone application or tool, or, as
an integrated component or feature of any one of the many
applications and/or services provided by the cloud-based por-
tal.

With some embodiments of the invention, users will
upload digital assets (e.g., an image file, a video file, an audio
file, or a document) to store them at a storage service associ-
ated with the cloud-based portal. Accordingly, over time, with
many users uploading different digital assets, the collection
of digital assets may grow to be extremely large. As described
in greater detail below, when a user uploads a digital asset to
the server with reference number 10, the digital asset is pro-
cessed and stored. Specifically, a unique identifier for the
digital asset is generated and associated with the digital asset.
In addition, the digital asset and any associated meta-data are
analyzed to identify a variety of attributes and/or character-
istics that comprise the feature space—that is, the set of
attributes and characteristics used in determining the similar-
ity between digital assets. Once identified, the attributes and/

US 9,165,068 B2

5

or characteristics are used to generate for the digital asset a
feature vector—an N-dimensional vector of features, typi-
cally coded numerically, and representative of the digital
asset. After generating the feature vector for the digital asset,
the digital asset (specifically, the unique identifier assigned to
the digital asset) is associated with a leaf node of a search tree
data structure. For example, the search tree data structure is
traversed to identify the leaf node having the nearest (in
distance) feature vector. The digital asset is then assigned to
the leaf node having the nearest feature vector. As described
below, by assigning each digital asset to a leaf node in this
manner, a similarity search can be efficiently performed to
identify digital assets that are most similar to areference (e.g.,
user-selected) digital asset.

FIG. 2 is a block diagram illustrating the functional mod-
ules of a cloud-based service implemented with one or more
servers and having a similarity search service consistent with
some embodiments of the invention. Referring now to FIG. 2,
the cloud-based search service enables a user to add (upload
and store) a digital asset, delete a digital asset, and search for
digital assets similar to a reference digital asset. Accordingly,
the search service includes a digital asset insertion module 22,
a digital asset deletion module 24, and a search request pro-
cessing module 26. In addition, a node balancing module
analyzes and processes the one or more search tree data
structures to ensure that the allocation of digital assets to the
various leaf nodes is balanced. Although not explicitly shown
in FIG. 2, the digital asset insertion module includes logic to
analyze digital assets for the purpose of identifying their
attributes and/or characteristics and generating a correspond-
ing feature vector for the digital asset. With some embodi-
ments, the digital asset insertion process, the digital asset
search process, and the digital asset deletion process are
separate and distinct processes that can operate concurrently
to simultaneously service multiple requests of the same, as
well as different types. The node balancing process is a
singleton task executing in the background.

FIG. 3 is a diagram illustrating a search tree data structure
for use with a similarity search service, consistent with
embodiments of the invention. For example, with some
embodiments, when a digital asset is initially uploaded to the
cloud-based portal for storage, the digital asset is assigned a
unique identifier. In addition, the digital asset is analyzed to
identify a set of attributes and/or characteristics with which a
feature vector is derived. The feature vector is a compact
representation of the various attributes and characteristics of
the particular digital asset. Using known techniques, the fea-
ture vectors for two different digital assets can be analysed to
derive a measure of distance between the feature vectors, and
thus, a measure of similarity between the two digital assets.

After anewly uploaded digital asset is analysed to generate
a feature vector, the digital asset is added to one or more
search tree data structures. For instance, as shown in FIG. 3,
the new digital asset with reference number 30 is being added
to the search tree data structure with the root node having
reference number 32. In this case, the feature vector associ-
ated with the new digital asset 30 will be compared with the
virtual feature vectors associated with each of leaf node 34,
internal node 36 and internal node 38. If, for example, the
feature vector of the new digital asset 30 is closest in distance
to the virtual feature vector associated with the internal node
with reference number 36, then the search tree will be tra-
versed by further comparing the feature vector of the new
digital asset 30 with the virtual feature vectors associated with
the leatnodes having reference numbers 40 and 42. Assuming
for the sake of this example that the feature vector of the new
digital asset 30 is closer in distance to the leaf node with

30

35

40

45

55

6

reference number 42 than the leaf node with reference num-
ber 40 and leaf node 34 and internal node 38, then the new
digital asset 30 will be assigned to the leaf node with refer-
ence number 42. In this manner, digital assets are generally
clustered or organized such that digital assets that are similar
(e.g., have smaller distances between their respective feature
vectors) will tend to be assigned to the same leaf nodes.

FIG. 4 is a diagram illustrating both a personal search tree
data structure 46 and a global search tree data structure 52,
both for use with a similarity search service consistent with
some embodiments of the invention. With some embodi-
ments, a new digital asset may first be assigned to a leaf node
of a personal search tree. If and when the user who has
uploaded the new digital asset makes a change to the access
privileges for the digital asset (e.g., by sharing the digital asset
with another user, a group of users, or the public in general),
the shared digital asset will be added to one or more additional
search trees. For instance, as illustrated in FIG. 4, the shared
digital asset with reference number 48 is associated with a
leafnode 50 of the personal search tree with reference number
46 and a leaf node 54 of the global search tree with reference
number 52. Because the digital asset is stored in association
with a unique identifier, assigning the digital asset to a leaf
node of more than one search tree is as simple as assigning the
unique identifier to the one or more search trees, and thereby
eliminating the need to have multiple copies of the actual
digital asset in storage.

With some embodiments, a digital asset may be added to
multiple search tree data structures with each search tree data
structure being designated for use with a different feature
space. For instance, in the case of an image similarity search
service, one search tree may be used to organize digital assets
(e.g., images) based on specific attributes and/or characteris-
tics that are used for facial recognition techniques, while
another search tree may be used for organizing the same set of
digital assets based on other attributes, such as color, size, etc.

FIG. 5 is a flow diagram illustrating the method operations
for processing a digital asset when it is initially uploaded or
otherwise provided to a server operating a similarity search
service according to some embodiments of the invention. As
illustrated in FIG. 5, the method generally begins when a user,
using a client-computing device (e.g., a desktop, tablet or
mobile computing device), interacts with a cloud-based por-
tal to invoke a request to have a digital asset, such as an image
file, uploaded to be stored at a server of the cloud-based
portal. Accordingly, at method operation 61, the server
receives a digital asset from the client-computing device.
Next, at method operation 62, an identifier is assigned to the
digital asset. At method operation 63, the digital asset is
analyzed to identify its attributes and characteristics that are
within one or more feature spaces associated with one or more
search trees. At method operation 64, a feature vector for the
digital asset is generated. Alternatively, more than one feature
vector may be generated. At method operation 65, the digital
asset is stored in association with the identifier that has been
assigned. This allows the digital asset to be retrieved from
storage based on its unique identifier. At method operation 66,
the digital asset is inserted into the search tree. To insert the
digital asset into the search tree, the search tree is traversed by
descending the search tree in a greedy manner to identify at
each level in the search tree the immediate sibling node hav-
ing the virtual feature vector that is closest in distance to the
feature vector of the digital asset until a leaf node is reached.
Finally, upon reaching a leaf node while descending the
search tree, at method operation 67, the digital asset is
assigned to the first leaf node reached during the tree tra-

US 9,165,068 B2

7

versal. In particular, the unique identifier and the feature
vector of the digital asset are assigned to the leaf node.

FIG. 6 is a flow diagram illustrating the method operations
performed during a node balancing operation according to
some embodiments of the invention. To keep the search tree
data structure from becoming unbalanced, a housekeeping
process referred to generally herein as a node balancing pro-
cess is performed. At method operation 71, the server (e.g.,
node balancing module 28 in FIG. 2) determines that the
number of digital assets assigned to a particular leaf node has
exceeded some defined threshold level. Accordingly, at
method operation 72, a cluster operation is performed to
generate a number of clusters based on the feature vectors of
the digital assets assigned to the over capacity leat node. Next,
at method operation 73, a number of new nodes are generated
and assigned virtual feature vectors to correspond with the
cluster centers generated by the clustering operation. Finally,
the digital assets that were initially assigned to the over capac-
ity leaf node are now re-assigned to one of'the new leaf nodes
having the virtual feature vector that is closest in distance to
the feature vector of the respective digital asset.

FIG. 7 is a block diagram illustrating the method opera-
tions that occur during a prioritized, breadth first search of a
search tree data structure, consistent with some embodiments
of the invention. For example, when a search for similar
digital assets is performed, the search tree is traversed to
identify the leaf nodes that are close (in terms of feature
vectors) to the reference asset. This is done by choosing the
closest node in the priority queue “PENDING” in FIG. 7. The
digital assets assigned to said leaf nodes are then analyzed and
added to a result queue, and then sorted based on distance.
The next closest node in the “PENDING” queue is then
identified. If this next node is a leaf node, then it is similarly
processed by adding the digital assets assigned to the leaf
node to the result queue, and then ordering all assets in the
result queue based on distance. If the next node is instead an
internal node, then the distance of the reference asset to each
of the child nodes is evaluated, and the child nodes are added
to the “PENDING” queue, and the “PENDING” queue is then
sorted according to distance. In this manner, the digital assets
having the feature vectors likely to be close in distance to the
feature vector of the reference digital asset are identified
quickly and efficiently.

As illustrated in FIG. 7 with reference number 80, with
both A and B in the pending queue, the node with letter Q is
compared against leaf node B and internal node A. Specifi-
cally, the feature vector corresponding with the reference
digital asset (e.g., Q) is compared to the virtual feature vectors
assigned to nodes A and B. In this example, node B is closer.
Accordingly, as shown in connection with reference 82, node
B is expanded and the digital assets assigned to node B are
analyzed. Specifically, the distance between node Q and digi-
tal assets 1, 2 and 3 is determined, added to the result queue,
and then ordered. As shown in this example, the digital asset
with reference number 2 is closest in distance to Q, and is
therefore listed first in the result queue. Next, the next node in
the pending queue is expanded, and the closest sibling node is
visited. For instance, as shown in connection with reference
number 84, nodes D and C are added to the pending queue
with D listed first to indicate that D is closer than C to the
feature vector of the reference asset. In this manner, the nodes
of the search tree are visited, and the digital assets most
similar to the reference asset are identified and ordered.

FIG. 8 is an example of a user interface for a tablet-based
computing device of an image similarity search service, con-
sistent with some embodiments of the invention. As shown in

30

40

45

55

8

FIG. 8, a search has been performed to identify images similar
to a reference image in the form of a picture of the Eiffel
Tower.

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro-
cessors may constitute processor-implemented modules,
engines, objects or devices that operate to perform one or
more operations or functions. The modules, engines, objects
and devices referred to herein may, in some example embodi-
ments, comprise processor-implemented modules, engines,
objects and/or devices.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
more processors or processor-implemented modules. The
performance of certain operations may be distributed among
the one or more processors, not only residing within a single
machine or computer, but deployed across a number of
machines or computers. In some example embodiments, the
processor or processors may be located in a single location
(e.g., within a home environment, an office environment or at
a server farm), while in other embodiments the processors
may be distributed across a number of locations.

FIG. 9 is a block diagram of a machine in the form of a
computer system or computing device within which a set of
instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine operates
as a standalone device or may be connected (e.g., networked)
to other machines. In a networked deployment, the machine
may operate in the capacity of a server or a client machine in
a client-server network environment, or as a peer machine in
apeer-to-peer (or distributed) network environment. In some
embodiments, the machine will be a desktop computer, or
server computer, however, in alternative embodiments, the
machine may be atablet computer, a mobile phone, a personal
digital assistant, a personal audio or video player, a global
positioning device, a set-top box, a web appliance, or any
machine capable of executing instructions (sequential or oth-
erwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or multiple
sets) of instructions to perform any one or more of the meth-
odologies discussed herein.

The example computer system 1500 includes a processor
1502 (e.g., a central processing unit (CPU), a graphics pro-
cessing unit (GPU) or both), a main memory 1501 and a static
memory 1506, which communicate with each other via a bus
1508. The computer system 1500 may further include a dis-
play unit 1510, an alphanumeric input device 1517 (e.g., a
keyboard), and a user interface (UI) navigation device 1511
(e.g., amouse). In one embodiment, the display, input device
and cursor control device are a touch screen display. The
computer system 1500 may additionally include a storage
device 1516 (e.g., drive unit), a signal generation device 1518
(e.g., a speaker), a network interface device 1520, and one or
more sensors 1521, such as a global positioning system sen-
sor, compass, accelerometer, or other sensor.

The drive unit 1516 includes a machine-readable medium
1522 on which is stored one or more sets of instructions and
data structures (e.g., software 1523) embodying or utilized by
any one or more of the methodologies or functions described
herein. The software 1523 may also reside, completely or at

US 9,165,068 B2

9

least partially, within the main memory 1501 and/or within
the processor 1502 during execution thereof by the computer
system 1500, the main memory 1501 and the processor 1502
also constituting machine-readable media.

While the machine-readable medium 1522 is illustrated in
an example embodiment to be a single medium, the term
“machine-readable medium” may include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more instructions. The term “machine-readable medium”
shall also be taken to include any tangible medium that is
capable of storing, encoding or carrying instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention, or that is capable of storing, encoding or carrying
data structures utilized by or associated with such instruc-
tions. The term “machine-readable medium” shall accord-
ingly be taken to include, but not be limited to, solid-state
memories, and optical and magnetic media. Specific
examples of machine-readable media include non-volatile
memory, including by way of example semiconductor
memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROM and
DVD-ROM disks.

The software 1523 may further be transmitted or received
over a communications network 1526 using a transmission
medium via the network interface device 1520 utilizing any
one of a number of well-known transfer protocols (e.g.,
HTTP). Examples of communication networks include a
local area network (“LLAN”), a wide area network (“WAN™),
the Internet, mobile telephone networks, Plain Old Telephone
(POTS) networks, and wireless data networks (e.g., Wi-Fi®
and WiMax® networks). The term “transmission medium”
shall be taken to include any intangible medium that is
capable of storing, encoding or carrying instructions for
execution by the machine, and includes digital or analog
communications signals or other intangible medium to facili-
tate communication of such software.

Although an embodiment has been described with refer-
ence to specific example embodiments, it will be evident that
various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope of the invention. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a
restrictive sense. The accompanying drawings that form a
part hereof, show by way ofillustration, and not of limitation,
specific embodiments in which the subject matter may be
practiced. The embodiments illustrated are described in suf-
ficient detail to enable those skilled in the art to practice the
teachings disclosed herein. Other embodiments may be uti-
lized and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. This Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which such
claims are entitled.

What is claimed is:

1. A computer-implemented method comprising:

at a server computer accessible via a data network to a
plurality of client computing devices, receiving a first
digital asset from one of the plurality of client comput-
ing devices over the data network;

generating a first feature vector and a unique identifier for
the first digital asset;

10

15

20

30

35

40

45

50

55

60

65

10

determining a first search tree leaf node of a first search tree
data structure maintained at the server computer is asso-
ciated with a second feature vector that is close in dis-
tance to the first feature vector generated for the first
digital asset, wherein the second feature vector is asso-
ciated with a second digital asset;

based on determining the first search tree leaf node is

associated with the second feature vector that is close in
distance to the first feature vector, assigning the first
feature vector and the unique identifier for the first digi-
tal asset to the first search tree leaf node, wherein the first
digital asset is added to a second search tree data struc-
ture maintained at the server computer by assigning the
unique identifier for the first digital asset to a second
search tree leaf node of the second search tree data
structure; and

storing the first digital asset in association with the unique

identifier, wherein the first digital asset is retrievable
from storage based on a retrieval request comprising the
unique identifier.

2. The computer-implemented method of claim 1, wherein
determining the first search tree leaf node is associated with
the second feature vector that is close in distance to the first
feature vector generated for the first digital asset comprises:

traversing a root node, one or more internal nodes, and one

or more leaf nodes of the first search tree data structure
to identify the first search tree leaf node associated with
the second feature vector that, at alevel of the first search
tree data structure, is closest in distance to the first fea-
ture vector generated for the first digital asset.

3. The computer-implemented method of claim 1, wherein
the first search tree data structure is a personal search tree data
structure, the method further comprising:

assigning the first feature vector and the unique identifier

for the first digital asset to the second search tree leaf
node of the second search tree data structure maintained
at the server computer, the second search tree data struc-
ture is 1) a search tree data structure for organizing digital
assets accessibleto a group of users, and ii) implemented
with a highly scalable graph database and having a root
node, one or more internal nodes, and one or more leaf
nodes to which the digital assets are assigned.

4. The computer-implemented method of claim 3, wherein
assigning the first feature vector and the unique identifier for
the first digital asset to the second search tree leaf node
comprises:

traversing the root node, the one or more internal nodes,

and the one or more leaf nodes of the second search tree
data structure to identify a particular leaf node with an
assigned feature vector that is close in distance to the
first feature vector generated for the first digital asset;
and

assigning the first feature vector and the unique identifier

for the first digital asset to the particular leaf node of the
second search tree data structure.

5. The computer-implemented method of claim 1, further
comprising:

responsive to determining that a number of digital assets

assigned to a particular leaf node of the first search tree
data structure is equal to or greater than a threshold
number, performing a clustering algorithm to generate a
plurality of clusters based on feature vectors of the digi-
tal assets assigned to the particular leaf node, each of the
plurality of clusters having as a center a new feature
vector that is derived based on the feature vectors of the
digital assets assigned to the particular leaf node;

US 9,165,068 B2

11

converting the particular leaf node into an internal node by
generating a new leaf node for each of the plurality of
clusters, resulting in a plurality of new leaf nodes, and
assigning each of the plurality of new leaf nodes to the
particular leaf node; and

assigning each digital asset that was assigned to the par-

ticular leafnode to atleast one of the plurality of new leaf
nodes, the at least one of the plurality of new leaf nodes
having a feature vector that is closest in distance to the
feature vector of the respective digital asset.

6. The computer-implemented method of claim 1, further
comprising:

receiving a search request for digital assets that are similar

to a third digital asset;

based on the first feature vector for the first digital asset and

athird feature vector for the third digital asset, determin-
ing that the first digital asset is similar to the third digital
asset;

retrieving the first digital asset from storage based on the

retrieval request comprising the unique identifier; and
providing the first digital asset in response to the search
request.

7. The computer-implemented method of claim 6, wherein
the search request specifies a particular group and a priori-
tized breadth first search is performed to identify only those
digital assets having access privileges defined to allow mem-
bers of the particular group access.

8. A system comprising:

a processor for executing instructions comprising com-

puter code;

amemory device in communication with the processor, the

memory device for storing instructions executable by
the processor;

computer code to receive a first digital asset from a client

computing device over a data network;

computer code to generate a first feature vector and a

unique identifier for the first digital asset;

computer code to determine a first search tree leaf node of

a first search tree data structure is associated with a
second feature vector that is closest in distance to the
first feature vector generated for the first digital asset,
wherein the second feature vector is associated with a
second digital asset;

computer code to assign the first feature vector and the

unique identifier for the first digital asset to the first
search tree leaf node based on determining the first
search tree leaf node is associated with the second fea-
ture vector that is closest in distance to the first feature
vector, wherein the unique identifier for the first digital
asset is further useable to add the first digital asset to a
second search tree data structure, wherein adding the
first digital asset to the second search tree data structure
comprises assigning the unique identifier for the first
digital asset to a second search tree leaf node of the
second search tree data structure; and

computer code to store the first digital asset in association

with the unique identifier, wherein the first digital asset
is retrievable from storage based on a retrieval request
comprising the unique identifier.

9. The system of claim 8, further comprising:

computer code to traverse a root node, one or more internal

nodes, and one or more leaf nodes of the first search tree
data structure to identify the first search tree leaf node
associated with the second feature vector that, at a level
of the first search tree data structure, is closest in dis-
tance to the first feature vector generated for the first
digital asset.

10

15

20

25

30

35

40

45

50

55

60

65

12

10. The system of claim 8, wherein the first search tree data
structure is a personal search tree data structure, the system
further comprising:

computer code to assign the first digital asset to the second

search tree leaf node of the second search tree data
structure, the second search tree data structure is i) a
search tree data structure for organizing digital assets
accessible to a group of users, and ii) implemented with
ahighly scalable graph database and having a root node,
one or more internal nodes, and one or more leaf nodes
to which the digital assets are assigned.

11. The system of claim 10, further comprising:

computer code to traverse the root node, the one or more

internal nodes, and the one or more leaf nodes of the
second search tree data structure to identify a particular
leaf node with an assigned feature vector that is closest
in distance to the first feature vector generated for the
first digital asset; and

assigning the first digital asset to the particular leaf node of

the second search tree data structure.
12. The system of claim 10, further comprising computer
code to:
responsive to determining that a number of digital assets
assigned to a particular leaf node of the first search tree
data structure is equal to or greater than a threshold
number, perform a clustering algorithm to generate a
plurality of clusters based on feature vectors of the digi-
tal assets assigned to the particular leaf node, each of the
plurality of clusters having as a center a new feature
vector that is derived based on the feature vectors of the
digital assets assigned to the particular leaf node;

convert the particular leaf node into an internal node by
generating a new leaf node for each of the plurality of
clusters, resulting in a plurality of new leaf nodes, and
assigning each of the plurality of new leaf nodes to the
particular leaf node; and

assign each digital asset that was assigned to the particular

leaf node to at least one of the plurality of new leaf
nodes, the at least one of the plurality of new leaf nodes
having a feature vector that is closest in distance to the
feature vector of the respective digital asset.

13. The system of claim 8, further comprising:

computer code to receive a search request for digital assets

that are similar to a third digital asset;

computer code to determine that the first digital asset is

similar to the third digital asset based on the first feature
vector for the first digital asset and a third feature vector
for the third digital asset;

computer code to retrieve the first digital asset from storage

based on the retrieval request comprising the unique
identifier; and

providing the first digital asset in response to the search

request.

14. The system of claim 13, wherein the search request
specifies a particular group and a prioritized breadth first
search is performed to identify only those digital assets hav-
ing access privileges defined to allow members of the particu-
lar group access.

15. A computer-readable storage medium storing execut-
able instructions thereon, which, when executed by a proces-
sor of a server computer, cause the server computer to:

receive a first digital asset;

generate a first feature vector and a unique identifier for the

first digital asset;

based on the first feature vector for the first digital asset and

a second feature vector for a second digital asset,
wherein the second feature vector is associated with a

US 9,165,068 B2

13

first search tree leaf node of a first search tree data
structure maintained at the server computer, determine
the first digital asset is to be associated with the first
search tree leaf node;

based on determining the first digital asset is to be associ-

ated with the first search tree leaf node, assign the first
feature vector and the unique identifier for the first digi-
tal asset to the first search tree leaf node, wherein the
unique identifier is further useable to add the first digital
asset to a second search tree data structure, wherein
adding the first digital asset to the second search tree data
structure comprises assigning the unique identifier for
the first digital asset to a second search tree leaf node of
the second search tree data structure; and

store the first digital asset in association with the unique

identifier, wherein the first digital asset is retrievable
from storage based on a retrieval request comprising the
unique identifier.

16. The computer-readable storage medium of claim 15,
further comprising executable instructions which, when
executed by the processor of the server computer, cause the
server computer to:

traverse a root node, one or more internal nodes, and one or

more leaf nodes of the first search tree data structure to
identify the first search tree leaf node associated with the
second feature vector that, at a level of the first search
tree data structure, is closest in distance to the first fea-
ture vector generated for the first digital asset.

17. The computer-readable storage medium of claim 15,
further comprising executable instructions which, when
executed by the processor of the server computer, cause the
server computer to:

assign the first digital asset to the second search tree leaf

node of the second search tree data structure, wherein
the second search tree data structure is maintained at the
server computer and the second search tree data struc-
ture is 1) a search tree data structure for organizing digital
assets accessibleto a group of users, and ii) implemented
with a highly scalable graph database and having a root
node, one or more internal nodes, and one or more leaf
nodes to which the digital assets are assigned.

18. The computer-readable storage medium of claim 17,
further comprising executable instructions which, when
executed by the processor of the server computer, cause the
server computer to:

traverse the root node, the one or more internal nodes, and

the one or more leaf nodes of the second search tree data
structure to identify a particular leaf node with an

10

15

25

14

assigned feature vector that is closest in distance to the
first feature vector generated for the first digital asset;
and

assign the first digital asset to the particular leaf node of the

second search tree data structure.

19. The computer-readable storage medium of claim 15,
further comprising executable instructions which, when
executed by the processor of the server computer, cause the
server computer to:

responsive to determining that a number of digital assets

assigned to a particular leaf node of the first search tree
data structure is equal to or greater than a threshold
number, perform a clustering algorithm to generate a
plurality of clusters based on feature vectors of the digi-
tal assets assigned to the particular leaf node, each of the
plurality of clusters having as a center a new feature
vector that is derived based on the feature vectors of the
digital assets assigned to the particular leaf node;

convert the particular leaf node into an internal node by

generating a new leaf node for each of the plurality of
clusters, resulting in a plurality of new leaf nodes, and
assigning each of the plurality of new leaf nodes to the
particular leaf node; and

assign each digital asset that was assigned to the particular

leaf node to at least one of the plurality of new leaf
nodes, the at least one of the plurality of new leaf nodes
having a feature vector that is closest in distance to the
feature vector of the respective digital asset.

20. The computer-readable storage medium of claim 15,

3o further comprising executable instructions which, when

35

40

45

executed by the processor of the server computer, cause the
server computer to:
receive a search request for digital assets that are similar to

a third digital asset;

perform a prioritized breadth first search to identify digital

assets assigned to leaf nodes of the first search tree data
structure having feature vectors that are closest in dis-
tance to a third feature vector for the third digital asset;
and

retrieve the identified digital assets from storage based on

one or more retrieval requests comprising unique iden-
tifiers for the identified digital assets.

21. The computer-readable storage medium of claim 20,
wherein the search request specifies a particular group and the
prioritized breadth first search is performed to identify only
those digital assets having access privileges defined to allow
members of the particular group access.

#* #* #* #* #*

